

BIPOLAR RF TRANSISTORS

Class C 1030/1090 MHz

Product Description

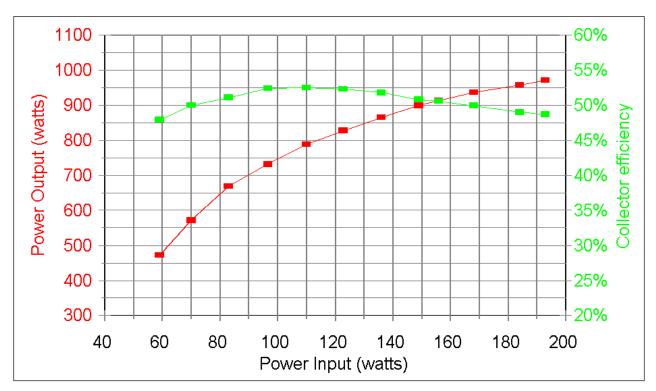
The WPTB64A1011Ax is an application-specific transistor implemented using Northrop Grumman's Silicon Power Bipolar process and developed for short-pulse, high-power IFF applications. Ballasted emitters in 64 separate base cells on a 3.5 mil thick die help ensure low thermal resistance and good junction temperature uniformity for high reliability. This device is configured for common base operation and is tested at 800 ns pulse width with 1% duty cycle.

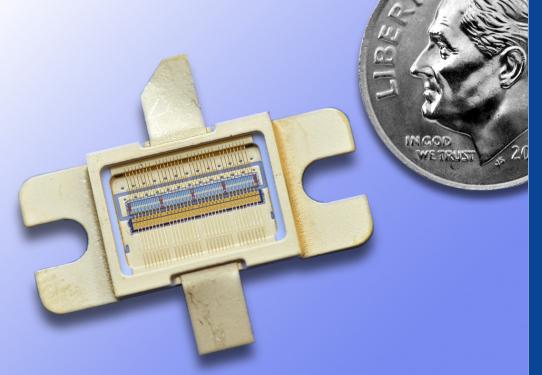
Features

- Silicon Technology
- Refractory/Gold Metalization
- Single Stage Internal Matching
- Metal/Ceramic Hermetic Package
- Single Transistor Die Implementation

Absolute Maximum Ratings

Storage Temperature65° to 200° C
Operating Junction Temperature200° C
Lead Temperature (Soldering 10 sec) 300° C
Collector-Base Voltage65V
Emitter-Base Voltage3V
Peak Collector Current38A
Transient Thermal Resistance 0.06° C/W


Electrical Performance


Characteristic	Symbol	Min	Typical	Max	Units	Test Conditions
Collector Breakdown Voltage	BV _{CES}	65	75		Volts	I = 50 mA
Emitter-Base Breakdown Voltage	BV_{EBO}	3	5		Volts	I = 10 mA
Forward Current Transfer Ratio	h _{FE}	10	50	200		$V_{CE} = 5 \text{ V, I}_{C} = 500 \text{ mA}$
Common-Base Power Gain	G	6.8	7.2		dB	Note1
Collector Efficiency	$\eta_{\rm c}$		45		%	Note 1
Rise Time	† _r			90	ns	Note1
Load Mismatch Tolerance	VSWR	3:1				Note 1
Overdrive Tolerance	OD	2			dB	Note1

Note 1: $V_{cc} = 52$ Volts, Pulse Width = 800 ns, Duty = 1%, $P_{in} = 160$ Watts, $f_{test} = 1030$ MHz

Typical Transfer Characteristics

BIPOLAR RF TRANSISTORS CLASS C 960-1215 MHz

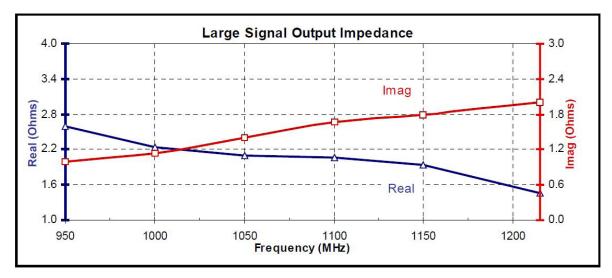
Product Description

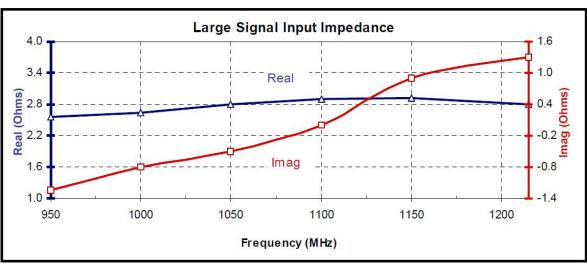
The WPTB32A0912Ax application-specific transistor uses the 3217 L-Band die which was developed for pulse radar systems. Optimal internal matching delivers high performance for applications such as the MIDS and JTIDS communication systems. Low thermal resistance and high efficiency couple to provide nearly imperceptible droop across the entire TDMA burst waveform at power levels of over 200 watts.

Features

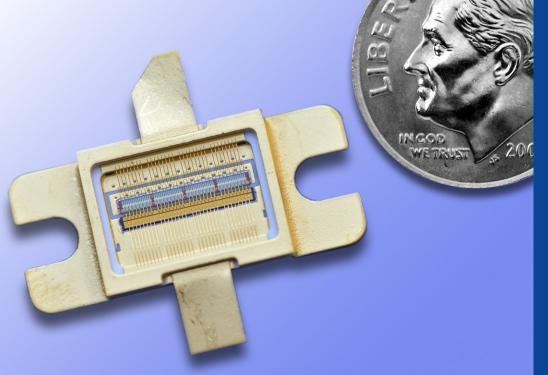
- Refractory/Gold Metalization
- Metal/Ceramic Hermetic Package
- Typical Power Out of 180 watts
- Two Stage Internal Matching
- Single Transistor Die Implementation

Absolute Maximum Ratings


Storage Temperature	-65° to 200° C
Operating Junction Temperature	200° C
Lead Temperature (Soldering 10 sec)	300° C
Collector-Base Voltage	80V
Emitter-Base Voltage	3V
Peak Collector Current	18A
Transient Thermal Resistance	0.35°C/W



Electrical Performance


Characteristic	Symbol	Min	Тур	Max	Units	Test Conditions
Collector-Base Breakdown Voltage	BV _{cbo}	70	85		Volts	I = 10 mA
Emitter-Base Breakdown Voltage	BV _{ebo}	3			Volts	I = 10 mA
Forward Current Transfer Ratio	H _{fe}	20	45	80		$V_{ce} = 5 \text{ V}$ Ic = 500 mA
Common Base Power Gain		7.2		8.5	dB	Note 1
Collector Efficiency		53			%	Note 2
Load Mismatch Tolerance		3:1			VSWR	Note 1
Frequency Band		1215		1400	MHz	

Note 1: Pulse format of 6.4 μ s ON, 6.6 μ s OFF for 3.3 ms, then OFF for 4.6 ms. Burst tests performed at P_{out} = 180 watts.

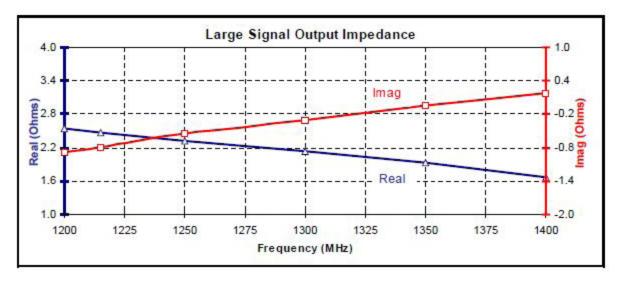
BIPOLAR RF TRANSISTORS CLASS C 1215-1400 MHz

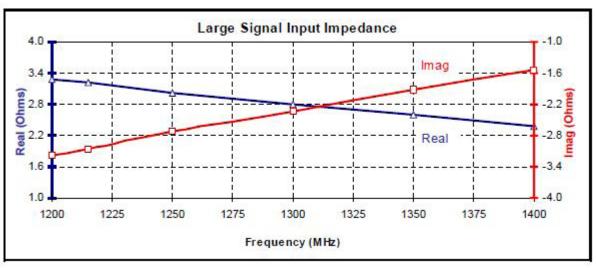
Product Description

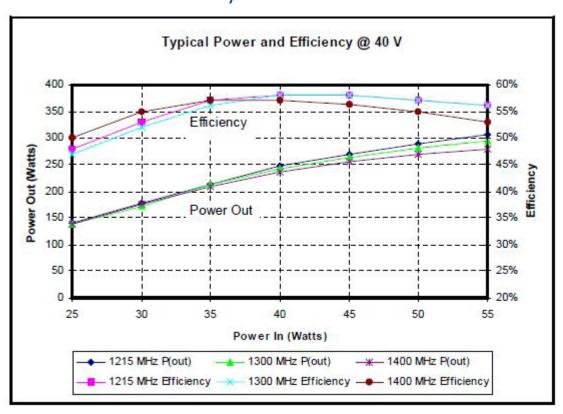
The WPTB32A1214Ax is a high-power NPN transistor designed for pulsed radar applications. The 3217 L-Band die utilized in this device is capable of operating over a wide range of pulse widths, duty cycles and bandwidths. An application-specific design can easily be tailored to your requirements through minor changes in ballast resistor value and internal matching network values.

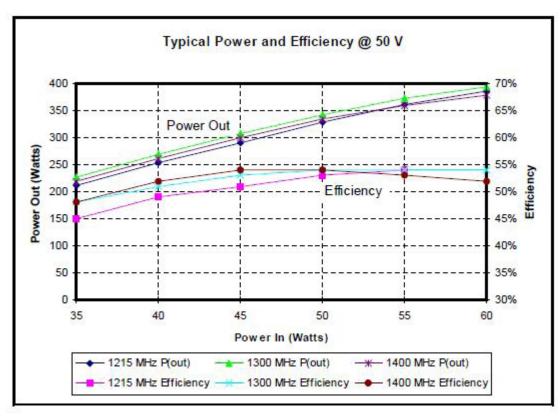
Features

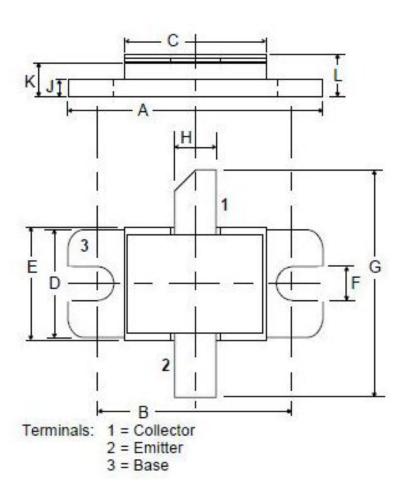
- Refractory/Gold Metalization
- Metal/Ceramic Hermetic Package
- Typical power out of 250 watts
- Two Stage Internal Matching
- Single Transistor Die Implementation

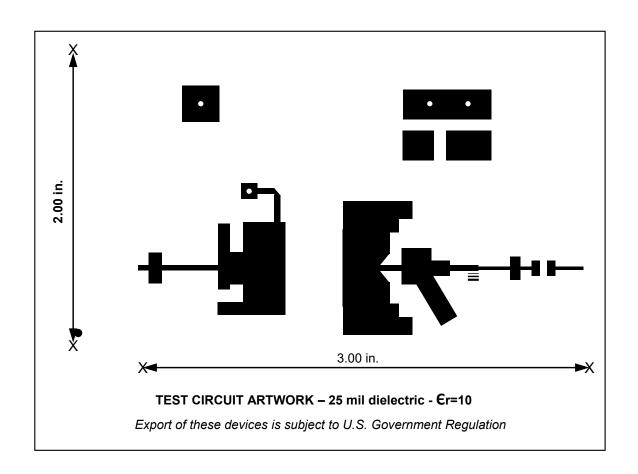

Absolute Maximum Ratings

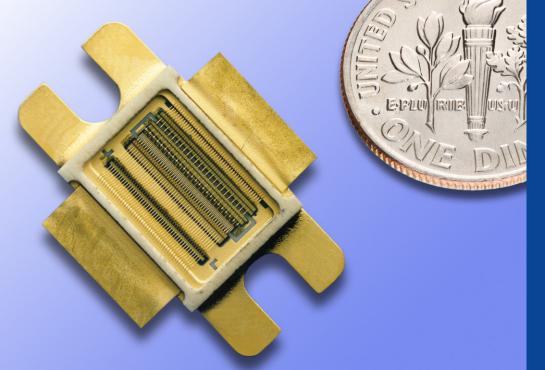

Storage Temperature65°	to 200° C
Operating Junction Temperature	200° C
Lead Temperature (Soldering 10 sec)	300° C
Collector-Base Voltage	80\
Emitter-Base Voltage	3\
Peak Collector Current	18 🗚
Transient Thermal Resistance	.0.18°C/W


Electrical Performance


Characteristic	Symbol	Min	Тур	Max	Units	Test Conditions
Collector-Base Breakdown Voltage	BV _{cbo}	70	85		Volts	I = 10 mA
Emitter-Base Breakdown Voltage	BV _{ebo}	3			Volts	I = 10 mA
Forward Current Transfer Ratio	H _{fe}	20	45	80		$V_{ce} = 5 V$ Ic = 500 mA
Common Base Power Gain		7.2		8.5	dB	$P_{in} = 42 \text{ W}$ $V_{cc} = 40 \text{ V}$ 150 ms 5% duty
Collector Efficiency		53			%	See above
Load Mismatch Tolerance		3:1			VSWR	
Frequency Band		1215		1400	MHz	


Power Out and Efficiency




Mechanical Data

	Inc	hes	Millin	neters	
Dimension	Min	Max	Min	Max	
Α	.890	.910	22.6	23.11	
В	.695	.705	17.65	17.91	
С	.495	.505	12.57	12.83	
D	.380	.390	9.65	9.91	
E	.395	.405	10.03	10.29	
F	.115	.125	2.92	3.18	
G	.770	.830	19.55	21.08	
Н	.145	.155	3.68	3.94	
J	.055	.065	1.39	1.65	
K	.110	.130	2.79	3.30	
L	.150	.215	3.81	5.46	

BIPOLAR RF TRANSISTORS Class C 2.7-2.9 GHz

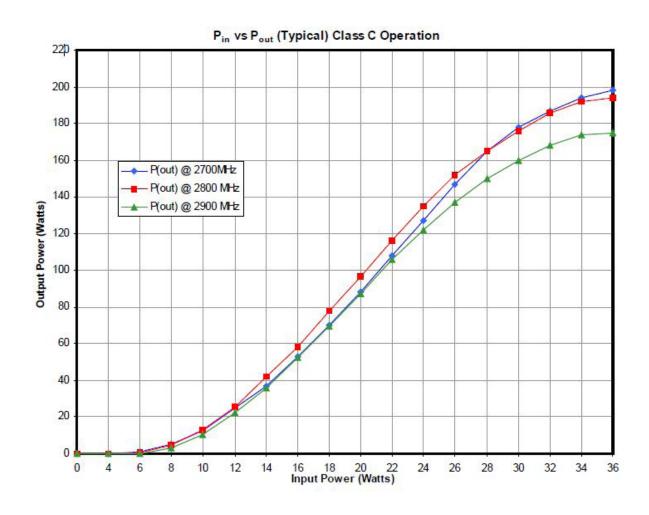
Product Description

The WPTB48F2729Cx is an application specific transistor implemented using Northrop Grumman's SiGe Power Bipolar process and developed for pulsed radar systems. Optimal internal matching delivers high performance for Air Traffic Control applications with collector efficiencies approaching the values normally observed for L-Band devices operating at less than half the frequency. This device is configured for common base operation and is tested at 60 µsec pulse width and 6% duty cycle.

Features

- Silicon Germanium HBT Technology
- Refractory/Gold Metalization
- Two Stage Internal Matching
- Metal/Ceramic Hermetic Package
- Single Transistor Die Implementation

Absolute Maximum Ratings


Storage lemperature	65° to 200° C
Operating Junction Temperature	200° C
Lead Temperature (Soldering 10 sec)	300° C
Collector-Base Voltage	55V
Emitter-Base Voltage	3V
Peak Collector Current	14A
Transient Thermal Resistance	0.25°C/W

Electrical Performance

Characteristic	Symbol	Min	Тур	Max	Units	Test Conditions
Collector-Base Breakdown Voltage	BV _{cbo}	55	60		Volts	I = 10 mA
Emitter-Base Breakdown Voltage	BV_{ebo}	3	5		Volts	I = 10 mA
Forward Current Transfer Ratio	H _{fe}	20	50	125		$V_{ce} = 5 \text{ V}$ Ic = 500 mA
Common Base Power Gain		6.9	7.1	8	dB	Note 1
Collector Efficiency		40	46		%	Note 2
Load Mismatch Tolerance		2:1			VSWR	Note 1
Frequency Band		2.7		2.9	GHz	

Note 1: V_{cc} = 36 Volts, Pulse Width = 60 µsec, Duty = 6.33%, P_{in} = 28 Watts

